Products

Water Cooled Crystal Module  

YAG Fiber
1 cm version

crystals
4 cm version

Designed with separable top and bottom pieces.
Centered groove to hold crystal from 100-1000µm in diameter.
Indium foil to provide effective interface for heat dissipation from crystal.
Push-connect water fittings for easy connection to water cooling line.
Constructed with brass for good heat conduction.
Designed with flange on bottom for adaptable integration into optical test setup.
Lengths available from 1-5cm.
Custom dimensions are available.
Single Crystal Fibers  



YAG Fiber

crystals

Shasta Crystals grows single crystal fibers using the Laser Heated Pedestal Growth (LHPG) technology. Our single crystal fibers are available with diameters that range from 25 microns to 1.5 mm and lengths from 1 mm to over 1 meter. Cladding of the fibers is also available using a unique technology developed at Shasta Crystals. Please contact us for pricing and with your customer specifications. Following are some of the materials available.

Undoped Yttrium Aluminum Garnet (YAG)

Datasheet
Undoped Yttrium Aluminum Garnet (YAG)
Property Value
Transmission range 0.21 to 5.5 μm
Refractive Index 1.81523 at 1.06 μm (1)
Reflection Loss 16.7% at 1.06 μm
Absorption Coefficient n/a
Reststrahlen Peak n/a
dn/dT +9.1 x 10-6 K-1 at 1064nm (2)
dn/dμ = 0 n/a
Density 4.56 g/cc
Melting Point 1940 °C
Thermal Conductivity 14 W m-1 K-1
Thermal Expansion 7.8 (111), 7.7 (110), 8.2 x 10-6 K-1 (100)
Hardness Knoop 1215
Specific Heat Capacity 590 J Kg-1 K-1
Dielectric Constant 11.7
Youngs Modulus (E) 300 GPa
Shear Modulus (G) n/a
Bulk Modulus (K) n/a
Elastic Coefficients C11=333; C12=111; C44=115
Apparent Elastic Limit 280 MPa
Poisson Ratio n/a
Solubility Insoluble in water
Molecular Weight 593.62
Class/Structure Cubic, m3m

 

Neodymium doped Yttrium Aluminum Garnet (Nd:YAG)

Datasheet
Neodymium doped Yttrium Aluminum Garnet (Nd:YAG)
Property Value
Chemical Formula Nd3+:Y3Al5O12
Crystal Structure cubic
Mass Density 4.56 g/cm3
Moh Hardness 8–8.5
Young's Modulus 280 GPa
Tensile Strength 200 MPa
Melting Point 1970 °C
Thermal Conductivity 10–14 W / (m K)
Thermal Expansion Coefficient 7–8 × 10−6/K
Thermal Shock Resistance Parameter 790 W/m
Birefringence none (only thermally induced)
Refractive Index at 1064 nm 1.82
Temperature Dependence of Refractive Index 7–10 × 10−6/K
Nd Density for 1 at. % Doping 1.36 × 1020 cm−3
Fluorescence Lifetime 230 μs
Absorption Cross Section at 808 nm 7.7 × 10−20 cm2
Emission Cross Section at 946 nm 5 × 10−20 cm2
Emission Cross Section at 1064 nm 28 × 10−20 cm2
mission Cross Section at 1319 nm 9.5 × 10−20 cm2
Emission Cross Section at 1338 nm 10 × 10−20 cm2
Gain Bandwidth 0.6 nm

 

Ytterbium doped Yttrium Aluminum Garnet (Yb:YAG)

Datasheet
Ytterbium doped Yttrium Aluminum Garnet (Yb:YAG)
Optical and Specctral Properties of Yb:YAG Crystals Value
Laser Transition 2F5/2à2F7/2
Laser Wavelength 1030nm
Photon Energy 1.93×10-19J(@1030nm)
Emission Linewidth 9nm
Emission Cross Section 2.0×10-20 cm2
Fluorescence Lifetime 1.2 ms
Diode Pump Band 940 nm or 970 nm
Pump Absorption Band Width 8 nm
Index of Refraction 1.82
Thermal Optical Coefficient 9×10-6/°C
Loss Coefficient

0.003 cm-1

Physical and Chemical Properties of Crystal Structure Value
Lattice Parameters 7–10 × 10−6/K
Melting Point 1.36 × 1020 cm−3
Moh Hardness 230 μs
Density 7.7 × 10−20 cm2
Specific Heat (0-20) 5 × 10−20 cm2
Modulus of Elasticity 28 × 10−20 cm2
Young's Modulus 9.5 × 10−20 cm2
Poisson Ratio 10 × 10−20 cm2
Tensile Strength 0.13~0.26GPa
Thermal Expansion Coefficient

[100]Direction:8.2×10-6/°C(0~250°C)
[110]Direction:7.7×10-6/°C(0~250°C)

[111]Direction:7.8×10-6/°C(0~250°C)

Thermal Conductivity

14W/m/K(@20°C)
10.5W/m/K(@100°C)

Thermal Optical Coefficient (dn/dT) 7.3×10-6/°C
Thermal Shock Resistance 790W/m
Solubility

Water: Insoluble;

Common Acids: Slightly

 

Erbium doped Yttrium Aluminum Garnet (Er:YAG)

Datasheet
Erbium doped Yttrium Aluminum Garnet (Er:YAG)
Common Operating Specs
  50% Er:YAG Low Doped (0.1% - 1.0%) Er:YAG
Emission Wavelength 2.94 μm 1.6 μm
Laser Transition 4I11/24I13/2 4I13/24I15/2
Fluorescence Lifetime 230 μs 2+-5 ms
Pump Wavelength 600-800 nm 1.5 μm
Physical Properties
Coefficient of Thermal Expansion 6.14 x 10-6 K-1
Thermal Diffusivity 0.041 cm2 s-2
Thermal Conductivity 11.2 W m-1 K-1
Specific Heat (Cp) 0.59 J g-1 K-1
Thermal Shock Resistant 800 W m-1
Refractive Index @ 632.8 nm 1.83
dn/dT (Thermal Coefficient of Refractive Index) @ 1064nm 7.8 10-6 K-1
Molecular Weight 593.7 g mol-1
Melting Point 1965°C
Density 4.56 g cm-3
MOHS Hardness 8.25
Young’s Modulus 335 Gpa
Tensile Strength 2 Gpa
Crystal Structure Cubic
Standard Orientation <111>
Y3+ Site Symmetry 8D2
Lattice Constant a=12.013 Å

 

Sapphire

Datasheet
Sapphire
Property Value
Transmission range 0.17 to 5.5 μm
Refractive Index No 1.75449; Ne 1.74663 at 1.06 μm (1)
Reflection Loss 14% at 1.06 μm
Absorption Coefficient 0.3 x 10-3 cm-1 at 2.4 μm (2)
Reststrahlen Peak 13.5 μm
dn/dT 13.1 x 10-6 at 0.546 nm (3)
dn/dμ = 0 1.5 μm
Density 3.97 g/cc
Melting Point 2040 °C
Thermal Conductivity 27.21 W m-1 K-1 at 300K
Thermal Expansion 5.6 (para) & 5.0 (perp) x 10-6/K *
Hardness Knoop 2000 with 2000g indenter
Specific Heat Capacity 763 J Kg-1 K-1 at 293K (4)
Dielectric Constant 111.5 (para) 9.4 (perp) at 1MHz
Youngs Modulus (E) 335 GPa
Shear Modulus (G) 148.1 GPa
Bulk Modulus (K) 240 GPa
Elastic Coefficients C11=496 C12=164; C13=498 C44=148
Apparent Elastic Limit 300 MPa (45,000 psi)
Poisson Ratio 0.25
Solubility 98 x 10-6 g/100g water
Molecular Weight 101.96
Class/Structure Trigonal (hex), R3c

 

Ytterbium doped Calcium Aluminum Gadolynate (Yb:CALGO)

Datasheet
Ytterbium doped Calcium Aluminum Gadolynate (Yb:CALGO)
Property Value
Formula Yb:CaGdAlO4  (Yb:CALGO)
Volume thermal expansion – x10-6K-1 35
Thermal shock resistance – W.m-1/2 >4.5
Thermal Conductivity –WK-1m-1 11.4 (undoped)
6.3 (2% Yb:CALGO)
5 (5% Yb:CALGO)
Crystal Structure Tetragonal K2NiF4 type structure
Quantum Defect <0.8%
Melting Point 1840ºC
Fluorescence Lifetime- µsec 420
Emission Wavelength – nm 1018-1052
Emission Cross Section – cm2 0.75 x 10-20

 

 

 
Nonlinear Optics  

Shasta Crystals is growing PPMgLN for green light generation and KLN for blue/UV light generation. These materials feature high nonlinear optical coefficients, the ability to handle high power and exhibit good conversion efficiency in their transparency range. In addition these products are nonhygroscopic and chemically and thermally stable. The Shasta Crystals proprietary technology allows for the poling of material during growth, eliminating a time consuming and expensive production step.

PPMgLN
For green light generation PPMgLN is the most efficient frequency converter.

Datasheet
Property Values References
Transmission range At 300K: 316 nm-5000 nm
at congruency (Li =
48.38%) and [Mg] = 5%.
J. Cryst. Growth, 208(1-4),
(2000), 493.
Nonlinear Optical
Coefficients
For congruent material and
[Mg]= 5%:
|d31(1064 nm)| = 4.4 pm/V
|d33(1064 nm)| = 25 pm/V
J. Opt. Soc. Am. B 14(9),
(1997), 2268-2294.
Refractive indices For congruent material and
5% Mg, at 298K and at
1064 nm:
no = 2.24
ne = 2.15
Sellmeier equation: see ref

J. Opt. Soc. Am. B, 14 (12),
(1997), 3319

 

 

J. Opt. Soc. Am. B, 14 (12),
(1997), 3319

Photorefractive damage
threshold
Congruent and 5% Mg,
20ns pulses at 1064 nm:
6.1x109 kW/m2
Proc. SPIE, 681, 20, (1990)
Coercive field Congruent Material and 5%
Mg: 4.5kV/mm at 298K
Jpn. J. Appl. Phys. 42 (2A),
L108 (2003)

 

KLN
For blue and UV light generation KLN is a new material whose composition can be easily tuned, it allows noncritical phase matching and it does not require poling.
Read Scientific document Paper: Laser Heated Pedestal Growth of Potassium Lithium Niobate for UV Generation

Datasheet
Property Values References
Transmission range At 300K: 350 nm-5000 nm Appl. Phys. Lett. 11,
(1967), 161-163.
Nonlinear Optical
Coefficients

d31(1064 nm) = 11.8pm/V

 

d33(1064 nm) = 10.5 pm/V

Appl. Phys. Lett. 62,
(1993), 19-21

Appl. Phys. Lett. 12,
(1968), 224

Refractive indices

For congruent material at
303 K and at 1064 nm:
no = 2.208
ne = 2.112

Sellmeier equation: see ref

S. Singh: ”Nonlinear
Optical Materials” in
Handbook of Lasers, ed. by
R. G. Pressley, pp 489-525