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Single-crystal fibers for
higher-power lasers
Gisele Maxwell, Bennett Ponting, Nazila Soleimani, and
Eminet Gebremichael

Single-crystal fibers of yttrium aluminum garnet could enable lasers
with approximately 50 times more output power than those using con-
ventional doped silica fibers.

Fiber lasers find many applications in materials processing, in-
cluding cutting, welding, drilling, and marking metal. To max-
imize their market penetration, it is necessary to increase their
output power. Conventional fiber lasers—in which the gain
medium consists of a single fused silica strand—can emit only
about 1.2kW of power. They are limited by the physical prop-
erties of rare-earth-doped silica materials. We have developed
single-crystal yttrium aluminum garnet (YAG) fibers, whose
physical properties are superior to those of amorphous silica and
which handle much higher output powers. These fibers enable a
whole new array of applications, including materials processing
and medical lasers.

There have been several approaches to the development of
high-power (multi-kilowatt) lasers. Bulk single crystals are used
extensively for their excellent thermal conductivity, efficiency,
and mechanical resistance. However, heat dissipation becomes
a problem in these systems at very high powers. A good remedy
is to use fibers instead of bulk crystals. Ytterbium-doped glass
fibers have demonstrated several kilowatts of continuous-wave
output power with excellent efficiency.1 In fiber lasers, the pump
is guided in a medium that is about 100�m in diameter, and the
laser signal in a single-mode core (about 10�m). The low absorp-
tion of the pump is spread over a long length of fiber (around
1m), which makes the heat load dissipate better than in a bulk
crystal, where the pump is absorbed over just a few millimeters.
However, fiber lasers exhibit limited performance in pulsed
regimes because high peak powers confined in a small core in-
duce nonlinear effects that affect the quality of the laser beam.
Our solution is to develop single-crystal fibers that act like a hy-
brid of glass fibers and bulk crystals (see Figure 1).2 Single fibers
maintain all the advantages of bulk single crystals, such as ther-
mal conductivity, efficiency, and mechanical resistance.

Figure 1. A doped single-crystal yttrium aluminum garnet (YAG)
fiber.

Our approach is to grow single-crystal doped YAG fibers by
the laser-heated pedestal growth (LHPG) method (see Figure 2).
A focused beam from a carbon dioxide (CO2) laser heats the tip
of a sintered ceramic rod with the desired composition. A me-
chanical apparatus lowers a seed crystal with the chosen orien-
tation into the molten zone, then pulls the resultant fiber from
the melt. This technique enabled us to grow long, flexible, single-
crystal fibers.

To fabricate single-crystal YAG fibers as laser gain media, the
challenge was to synthesize a cladded flexible fiber with a core of
dopant—erbium (Er), neodymium (Nd), or ytterbium (Yb)—that
would exhibit good wave-guiding properties. Some dopants,
such as Nd, spontaneously congregate at the center of the crystal
during growth, creating a natural core of dopant in the crystal,
while others (such as Er or Yb) do not. For those not sponta-
neously congregating at the core, we coated the as-grown fibers
with polycrystalline YAG.

We grew single-crystal Nd:YAG fibers of up to 900mm in
length. These fibers consisted of a doped core, 30�m in diameter,
surrounded by an undoped YAG cladding with an outer dia-
meter of 70–100�m. To clad doped single-crystal YAG fibers
with polycrystalline YAG, we developed a new sol-gel process
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Figure 2. The laser heated pedestal growth method for growing single-crystal doped YAG fibers. CO2: Carbon dioxide.

Figure 3. Impact of the closed-loop feedback system on sizing fiber diameter.

(a chemical process by which a solid compound is made from
liquid precursors). We were then able to synthesize high-quality
Er:YAG and Yb:YAG fibers with dopant concentrations as high
as 10%. Finally, we used a closed-loop feedback system to im-
prove control of sizing the fiber diameter, and reduced the
maximum diameter fluctuations from 7% to less than 1% (see
Figure 3). These developments enabled us to produce very
high quality, low-scattering (as low as 0.1dB/m), flexible single-
crystal fibers. Preliminary power handling experiments in our
fibers show a damage threshold of 6MW/cm2 in continuous
mode. We consider this result highly promising because the
threshold for a bulk Nd:YAG crystal is about 1MW/cm2.

It is crucial for future generations of fiber lasers to overcome
the limitations of glass to reach very high powers. Therefore, we
have developed single-crystal fibers of doped YAG that act as
a hybrid between bulk crystals and glass fibers. In this work,
we grew 900mm-long and 30�m-diameter single-crystal strands
with a variety of dopants. Preliminary results confirm the po-
tential for such fibers to overcome the limitations of materials
commonly used to fabricate lasers. The next steps for our tech-
nology will be lasing experiments using our cladded fibers in
both continuous-wave and pulsed regimes, to enable proof of
superior gain and efficiency.
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